翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

bioluminescence imaging : ウィキペディア英語版
bioluminescence imaging

Bioluminescence imaging (BLI) is a technology developed over the past decade that allows for the noninvasive study of ongoing biological processes in small laboratory animals. Recently, bioluminescence tomography (BLT) has become possible and several systems have become commercially available.
Bioluminescence is the process of light emission in living organisms. Bioluminescence imaging utilizes native light emission from one of several organisms which bioluminesce. The three main sources are the North American firefly, the sea pansy (and related marine organisms), and bacteria like ''Photorhabdus luminescens'' and ''Vibrio fischeri''. The DNA encoding the luminescent protein is incorporated into the laboratory animal either via a viral vector or by creating a transgenic animal. Rodent models of cancer spread can be studied through bioluminescence imaging.for e.g.Mouse models of breast cancer metastasis.
Systems derived from the three groups above differ in key ways:
*Firefly luciferase requires D-luciferin to be injected into the subject prior to imaging. The peak emission wavelength is about 560 nm. Due to the attenuation of blue-green light in tissues, the red-shift (compared to the other systems) of this emission makes detection of firefly luciferase much more sensitive ''in vivo.''
*Renilla luciferase (from the Sea pansy) requires its substrate, coelenterazine, to be injected as well. As opposed to luciferin, coelenterazine has a lower bioavailability (likely due to MDR1 transporting it out of mammalian cells). Additionally, the peak emission wavelength is about 480 nm.
*Bacterial luciferase has an advantage in that the ''lux''  operon used to express it also encodes the enzymes required for substrate biosynthesis. Although originally believed to be functional only in prokaryotic organisms, where it is widely used for developing bioluminescent pathogens, it has been genetically engineered to work in mammalian expression systems as well. This luciferase reaction has a peak wavelength of about 490 nm.
While the total amount of light emitted from bioluminescence is typically small and not detected by the human eye, an ultra-sensitive CCD camera can image bioluminescence from an external vantage point.
Common applications of BLI include ''in vivo'' studies of infection (with bioluminescent pathogens), cancer progression (using a bioluminescent cancer cell line), and reconstitution kinetics (using bioluminescent stem cells).
Researchers at UT Southwestern Medical Center have shown that bioluminescence imaging can be used to determine the effectiveness of cancer drugs that choke off a tumor’s blood supply. The technique requires luciferin to be added to the bloodstream, which carries it to cells throughout the body. When luciferin reaches cells that have been altered to carry the firefly gene, those cells emit light.
The BLT inverse problem of 3D reconstruction of the distribution of bioluminescent molecules from data measured on the animal surface is inherently ill-posed. The first small animal study using BLT was conducted by researchers at the University of Southern California, Los Angeles, USA in 2005. Following this development, many research groups in USA and China have built systems that enable BLT.
Mustard plants have had the gene that makes firefly's tails glow added to them so that the plants glow when touched. The effect lasts for an hour, but an utra-sensitive camera is needed to see the glow.〔(Dr. Chris Riley, “Glowing plants reveal touch sensitivity”, BBC 17 May 2000. )〕
== References ==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「bioluminescence imaging」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.